
42 The Delphi Magazine Issue 53

Beating The System:
Windows 2000,
Are You Getting
Certified?
by Dave Jewell

As promised last time, we’re
taking a break from the devel-

opment of our file system compo-
nent to concentrate on some of the
more important programming
issues surrounding Windows 2000,
with a special emphasis on what
you need do in order to be logo
compliant. As was the case with
Windows 95 and 98 (and even
Windows 3.1, for that matter),
Microsoft have released a set of
logo requirements prior to the
roll-out of the operating system
itself. If you want to display the
coveted ‘Certified for Windows’
gold logo on your product’s box,
then you need to be logo compli-
ant. To me, this is highly reminis-
cent of those occasions when my

eight-year-old son arrives home
proudly sporting a gold star from
his teacher, and many developers
feel that they’ve got better things
to do with their time than pander
to Microsoft’s demands.

The official reason for having a
set of logo requirements is that it
improves standardisation and
thereby gives end-users a common
experience when working with any
logo compliant product. This is
undeniably true: any initiative
which gives people a smooth, con-
sistent experience is bound to be a
good thing, both in terms of cus-
tomer satisfaction and in terms of
reduced support overhead.

However, there are those who
believe that Microsoft’s logo

requirements are also self-serving,
for at least two reasons. Firstly,
they lock developers into new,
proprietary Microsoft technolo-
gies which are only available on
the Windows platform, and sec-
ondly, they divert third-party
development effort away from the
creation of innovative new applica-
tions, forcing small developers to
concentrate on peripheral issues
which don’t always relate directly
to the functionality of the software,
and thereby increasing the com-
petitiveness of Microsoft’s own
applications.

A past example of this was the
16-bit versus 32-bit code issue.
Back in the days of Windows 95, at
a time when 32-bit programming
was relatively new, the logo
requirement stipulated that, in
order to be compliant, an applica-
tion had to be fully implemented
using 32-bit code. From the
end-user’s perspective, there was
no clear benefit to be gained by
imposing such a restriction, and
this requirement rather ignored
the fact that much of the code in
Windows 95 (and today, Windows
98) is still implemented in 16-bit
DLLs. It was really a case of ‘do
what we tell you, even though we
don’t do it ourselves’.

Be that as it may, the remainder
of this article concentrates on
some of the key requirements
introduced by the Windows 2000
logo programme. As you’ll see
from Figure 1, there are various
‘levels’ of logo certification, the
‘deluxe’ version being reserved for
applications that have been tested
for compliance under Windows
2000 Professional, NT 4.0 Worksta-
tion, Windows 98 and Windows 95.
If you want to read the logo
requirements for yourself, the first
place to check is http://msdn.
microsoft.com/winlogo where
you’ll find links to other relevant
documentation and downloadable
information. In particular, if you
point your web browser at
http://msdn.microsoft.com/certif-
ication/appspec.asp, you’ll find a
downloadable Word document

➤ Figure 1: The coveted gold stars… err… I mean logos. If you really
don't give a toss about getting Microsoft's seal of approval, then
you'll undoubtedly have less work to do in getting things working
under Windows 2000, but depending on what corners you cut, you
may get some flack from your customers.

➤ Facing page: Table 1



January 2000 The Delphi Magazine 43

W95 W98 W2000 Feature

Fundamentals

Yes Yes Yes Perform primary functionality and maintain stability.

Yes Yes Yes Provide 32-bit components.

Yes Yes Yes Support Long File Names and UNC paths.

Yes Yes Yes Support printers with long names and UNC paths.

No No Yes Do not read from or write to Win.ini, System.ini, Autoexec.bat or Config.sys on any
Windows operating system based on NT technology.

Yes Yes Yes Ensure non-hidden files have associated file-types, and all file-types have associated
icons, descriptions, and actions.

Yes Yes Yes Perform Windows version checking correctly.

Yes Yes Yes Support AutoPlay of compact discs.

No No Yes Kernel mode drivers must pass verification testing on Windows 2000.

No Yes Yes Hardware drivers must pass WHQL testing.

Install/Uninstall

Yes Yes Yes Install using a Windows Installer-based package that passes validation testing.

Yes Yes Yes Observe rules in componentisation.

Yes Yes Yes Identify shared components.

Yes Yes Yes Install to Program Files by default.

Yes Yes Yes Support Add/Remove Programs properly.

Yes Yes Yes Ensure that your application supports advertising.

Yes Yes Yes Ensure correct uninstall support.

Component Sharing

No No Yes Do not attempt to replace files that are protected by System File Protection.

No Yes Yes Component producers: Build side-by-side components.

No Yes Yes Application developers: Consume and install side-by-side components.

Yes Yes Yes Install any non side-by-side shared files to the correct locations.

Data and Settings Management

Yes Yes Yes Default to My Documents for storage of user-created data.

Yes Yes Yes Classify and store application data correctly.

No No Yes Degrade gracefully on access denied.

No No Yes Run in a secure Windows environment.

No No Yes Adhere to system-level Group Policy settings.

User Interface Fundamentals

Yes Yes Yes Support standard system size, colour, font and input settings.

Yes Yes Yes Ensure compatibility with the High Contrast option.

Yes Yes Yes Provide documented keyboard access to all features.

Yes Yes Yes Expose the location of the keyboard focus.

Yes Yes Yes Do not rely exclusively on sound.

Yes Yes Yes Do not place shortcuts to documents, help, or uninstall in the Start Menu.

No Yes Yes Support multiple monitors.

OnNow/ACPI Support

No Yes Yes Indicate busy application status properly.

No Yes Yes Respond to sleep requests from the operating system properly.

No Yes Yes Handle sleep notifications properly.

No Yes Yes Handle wake from normal sleep without losing data.

No Yes Yes Handle wake from critical sleep properly.

Application Migration

Yes Yes No Application must continue to function after upgrade to Windows 2000 Professional
without reinstall.



44 The Delphi Magazine Issue 53

Design Guide for Building Business
Applications which details the
requirements for ordinary (client
only) applications. There are also
other documents for server-only
and client/server applications.
Strictly speaking, these
requirements documents are sub-
ject to change, but let’s not bite our
fingernails too much, worrying at
the prospect of last minute
changes to the specification.

The most important logo
requirements are summarised in
Table 1, which I’ve taken from
Microsoft’s preliminary documen-
tation. As you can see, it compares
the various logo requirements for
each of Windows 95, 98 and
Windows 2000. There was an
additional column for NT 4, but I
removed this for the sake of
brevity.

Installation Changes:
The Joy Of MSI
If you’re a reader of Developers
Review, you’ll know that I’ve

recently reviewed the Wise for
Windows Installer package, which
is one of a new breed of software
installers designed to work with
Microsoft’s new MSI technology.
MSI technology (also known, some-
what confusingly, as ‘Windows
Installer’) simply means that
Microsoft have effectively taken
control of the software installation
process. Rather than allowing
third-party software installers to
load applications onto a Windows
2000 system, Microsoft think that
they can do the job better
themselves.

Arguably, Microsoft’s track
record, in terms of software
reliability, isn’t any better than
anyone else’s (keep quiet at the
back, there!), but it does make
sense to have the operating system
responsible for application instal-
lation. By doing things this way,
the software installer can better
integrate with new operating
system gizmos such as the
enhanced Add/Remove Programs

database and can incorporate
advanced capabilities such as the
ability to ‘roll-back’ a failed install.

Under Windows 2000, a third-
party software setup is packaged
as a specialised type of file with an
extension of .MSI. This file type is a
sort of encrypted, compressed
database and things are arranged
such that you need only double-
click an MSI file in order to launch
the new Microsoft installer.

If you want to earn Microsoft’s
much-coveted Windows 2000
compatibility logo for your prod-
uct, then you have to ship your
product with an MSI compatible
setup. This presents an obvious
problem when installing on (say)
Windows 98 and Windows 95 but,
interestingly, it’s possible to
‘retro-fit’ the installer engine onto
both these platforms. Thus, the
cunning Wise for Windows
Installer product will let you create
a logo-compatible setup which
works as advertised for Windows
2000. If the setup program detects
that it’s not running on W2000, it
installs the Microsoft Installer
engine first, and then transfers
control to the MSI file. This ability
to retro-fit the MSI engine onto
Windows 95 and Windows 98 is
reflected in Table 1, where you’ll
see a ‘Yes’ against all three
operating systems for the ‘Install
using a Windows Installer-based
package...’ entry.

Speaking personally, I think the
need for a consistent software
installation procedure is one of the
logo requirements that I feel most
enthusiastic about. Just the other
day, I installed a desktop enhance-
ment utility called Nuts n’ Bolts.
This was supplied on the cover CD
of a UK computer magazine which
had better remain nameless: I
write for them too and they might
not appreciate the adverse public-
ity! Suffice it to say that not long
after I’d installed Nuts n’ Bolts, I
found that my Windows 98 setup
was behaving very oddly. I could
not load Microsoft Developer
Studio, Visual Basic 6.0 was falling
over and Microsoft’s Deluxe CD
player crashed every time I put an
audio CD in the drive. It turned out
that Nuts n’ Bolts had installed

➤ Figure 2: So you thought software installers were simple?
This is the entity relationship diagram which describes the various
tables found within an MSI file. It's essentially a relational database
which describes the various components present within a particular
software installation.



46 The Delphi Magazine Issue 53

antique copies of OLEAUT32.DLL,
MSVCRT.DLL and a couple of other
DLLs, the result being that my PC
was very unhappy indeed. There’s
a lot more I could say about Nuts n’
Bolts, but one word will suffice:
avoid.

The important point, of course,
is that a setup program should
never replace system DLLs with
older versions. Moreover, it should
check disk space requirements
before installation, increment the
reference count of shared DLLs,
and so forth. By using the new
Microsoft installer technology,
most of these issues are taken care
of for you.

Time To Emigrate?
If you’re involved in creating a new
application now, it would also be
prudent to consider migration
issues. Migration is essentially
Microsoft-speak for the process of
moving an existing Windows 95/98
setup to Windows 2000. Ideally,
when a computer system is
migrated to Windows 2000, exist-
ing applications will continue to
work as before. Ideally! In practice,
I still have a PC containing a 56K
WinModem which disappeared
from the face of the planet on the
day that I upgraded from Windows
95 to Windows 98. No matter what
patches I download and install,
that modem is still non-existent as
far as Windows is concerned,
despite the fact that the card is still
installed in the machine. I find it
very hard to believe that the card
developed a hardware fault on the
very day that I installed Windows
98. Rather, this is an example of a
migration that didn’t work out, and
I’ve heard numerous examples
from other users.

The fact is, an application that
ran perfectly well under Windows
9x will occasionally fail when it
wakes up and finds itself running
under Windows 2000. As a respon-
sible software developer, you
should do everything possible to
preclude the end-user having to
reinstall your product from
scratch. One of the main reasons
why a program might not work
under Windows 2000 relates to the
changed layout of certain system

registry entries, or there might be
other problems relating to changes
in system DLLs. Fortunately,
Microsoft have come to the rescue
here courtesy of a new feature
called MEI or the Migration Exten-
sion Interface. Basically, you
create a custom DLL and deploy
this along with your application.
During system migration, the Win-
dows 2000 setup program will
automatically call your migration
DLL, thus giving you control at cer-
tain times during the migration
process. You can then perform
whatever application-specific
actions are needed to migrate your
program to Windows 2000, such as
moving system registry entries,
enabling other platform-specific
features, and so forth.

The migration DLL that you
supply is just an ordinary DLL and
must export a number of named
routines (seven in all) that are
called at various times during the
Windows 2000 setup process. If
your DLL doesn’t contain all seven
of these routines, then it won’t be
recognised as a valid migration
DLL and will be ignored. When you
first install your application, you
must create a registry entry that
points to your migration DLL. This
must be located under the
following registry path:

HKEY_LOCAL_MACHINE\Software\
Microsoft\Windows\
CurrentVersion\Setup\
Migration DLLs

There’s no guarantee that your
migration DLL will be called in any
specific order (relative to other
migration DLLs) and you need to
bear this in mind if you’re develop-
ing a suite of applications, each of
which has its own migration DLL.
For more information on migration
DLLs, and the seven functions that
you need to export, you can check
out the appropriate Microsoft
documentation at

http://msdn.microsoft.com/
library/psdk/win9xmig/
migext_2jvp.htm

Still on the subject of installation
and setup issues, you should be

aware that Windows 2000 sup-
ports ‘side-by-side sharing’, which
is a fancy way of saying that differ-
ent processes can load different
versions of the same DLL, whether
it be a plain-vanilla DLL or a COM
server, such as an ActiveX control.

You may remember the debacle
which ensued when Microsoft
released a beta version of Internet
Explorer 4.0. Everything worked
fine apart from the fact that the
installation installed a buggy ver-
sion of COMCTL32.DLL, the
common controls library. This
DLL worked fine with IE4.0, but
didn’t seem to get on well with any
other application.

I wholeheartedly approve of
Microsoft releasing beta versions
of their products, but not if doing
so is going to screw up an existing
Windows installation! The sim-
plest way of avoiding the problem
would have been for Microsoft to
install the new COMCTL32 library
into the same directory as the other
Internet Explorer components that
needed it, leaving the ‘global’
version of the common controls
library alone. That, in a nutshell,
is the essence of ‘side-by-side
sharing’.

In early versions of Windows, it
was impossible for two different
versions of the same DLL (or EXE
file, for that matter) to be in
memory at the same time. Note
carefully that I am not talking
about different instances of a run-
ning program or DLL here: in these
cases, there is only ever one copy
of the code in memory. Rather, I’m
saying that in early Windows
implementations, you could not
have two DLLs in memory, both of
which had the same module name:
the operating system would not
allow it. This restriction no longer
exists in either Windows 98 or
Windows 2000. You simply need to
ensure that special versions of oth-
erwise standard DLLs reside in the
same directory as the application
that needs them. In the case of
side-by-side COM components,
the ‘special’ version should be reg-
istered using a relative (rather
than absolute) pathname, and
should use a different GUID to the
standard issue.



January 2000 The Delphi Magazine 47

System File Protection
Another component sharing issue
relates to the new SFP (System File
Protection) feature which is now a
part of Windows 2000. Basically,
there’s now a little process which
lurks in the background checking
to see whether some badly
behaved application has acciden-
tally (or deliberately!) deleted or
overwritten one of the operating
system’s critically important
system files. If such a misdemean-
our is detected the file in question
is immediately restored from a
backup.

At the risk of causing offence, I
have to say that this strikes me as a
somewhat ‘cloth-cap’ approach to
protecting the integrity of the core
operating system. Surely, with all
the emphasis on security that NT
now has, it would have made more
sense to trap access to critical files
at the file system level and simply
deny the attempted write, rename,
deletion or whatever. I feel that this
approach would have made for a
much more secure system. After
all, what’s to stop the adventurous

hacker from finding some way to
dispose of the aforementioned
background task, or even massage
the backup copies of the system
DLLs before initiating a restore
operation? Time will tell, but I
would have liked to see a much
more serious approach to the
problem of protecting operating
system integrity. It goes without
saying, incidentally, that only
authorised Microsoft service
packs and operating system
upgrades are allowed to make
changes to protected files, but I
don’t doubt that someone will
work around this, given time.

To enumerate the list of pro-
tected system files, you can use

the SfcGetNextProtectedFile API
routine which is prototyped as
follows:

BOOL SfcGetNextProtectedFile(
PPROTECTED_FILE_DATA
ProtFileData);

The PROTECTED_FILE_DATA data
structure is formatted as shown in
Listing 1.

For each filename retrieved, the
FileName field is filled with the
name of the file. You should set
FileNumber to zero before calling
the function for the first time. The
routine will return non-zero on

Data Type Folder CSIDL Folder Location

Per user,
roaming

CSIDL_APPDATA [user profile]\Application data

Per user,
non-roaming

CSIDL_LOCAL_APPDATA [user profile]\Local Settings\
Application data

Per machine
(non-user specific
and non- roaming)

CSIDL_COMMON_APPDATA All Users\Application data

➤ Table 2



48 The Delphi Magazine Issue 53

success and zero when there are
no more files to enumerate.

There’s also another routine,
SfcIsFileProtected, which can be
used to determine whether an arbi-
trary filename is protected. It is
prototyped:

BOOL SfcIsFileProtected(
LPCWSTR ProtFileName);

Nothing New Under The Sun?
One of the most interesting
changes in Windows 2000 is the
deprecating of the system registry
as the best place to store applica-
tion data. Let’s briefly recap: when
Windows first crawled out of the
primordial ooze, all we had to work
with were a couple of .INI files
called WIN.INI and SYSTEM.INI.
Pretty soon, every man and his dog
started writing shed-loads of
application-specific data into

these all-important files. In a panic
(remember folks, the implementa-
tion limited these files to 64Kb in
size!) Microsoft came up with the
idea of private .INI files, meaning
that developers could now store
their configuration data into a sep-
arate file of their own choosing,
preferably in the same directory as
the program.

Time moved on, and some deep
thinker at Redmond hit upon the
idea of a single, central repository
for everything: operating system
data and application information.
Thus the concept of the system
registry was born. Now, a few years
on, we have a situation where it’s
routine to have vast system regis-
try files (the one on my primary
development machine is over 8Mb
in size) and any damage to this
single file can quickly reduce a PC
to the high-tech equivalent of a
chocolate teapot. Now, things have
come full circle once more and

with the advent of Windows 2000,
we’re encouraged to save our data
into special directories reserved
for the purpose.

Actually, I’m not being entirely
fair here. What we’re really talking
about is Microsoft’s new ‘Data and
Settings Management’, which
embraces not only application
configuration settings but
document files as well. Windows
2000 provides support for
‘roaming users’, which basically
means that, in a networked
environment, it should be possible
for a user to move between
different workstations and find
that user settings and configura-
tion data transparently move with
him or her.

This is accomplished by having
the application write user files to a
special folder which has been des-
ignated by the system administra-
tor. Under Windows 2000, the
SHGetFolderPath API call has been
extended to return more folder
locations than previously. Thus,
passing CSIDL_PERSONAL to SHGet-
FolderPath will retrieve the
pathname of that user’s My Docu-
ments folder. In a networked envi-
ronment, this folder can be located
on a network and thus ‘follow the
user around’. In fact, if you call the
common dialogs’ file open and
save routines with no pathname
specified, they will always default
to the My Documents location.
Microsoft recommend that you
place other folders below the My
Documents folder including My
Pictures for use by graphics appli-
cations. Obviously, there’s noth-
ing to stop punters from storing
files anywhere they want, but
Microsoft encourage you to gently
point end-users at the My Docu-
ments directory tree by default.

As regards configuration data
(as opposed to documents)
Microsoft now make it plain that
the registry isn’t the best place to
store large amounts of configura-
tion information. They define
‘large amounts’ as anything larger
than 64Kb in size but, personally, I
would be very unhappy to store
anything like this amount of data in
the registry. In addition to the
aforementioned CSIDL_PERSONAL

➤ Figure 3: If you don't have an MSDN subscription, and you don't
feel like downloading the 650Mb (yes, really!) SDK from the
Microsoft site, you can nevertheless browse the MSDN library
online. Here's the information that relates to the new ADSI
(Active Directory Service Interfaces).

typedef struct _PROTECTED_FILE_DATA {
WCHAR   FileName[MAX_PATH];
DWORD   FileNumber;

} PROTECTED_FILE_DATA, *PPROTECTED_FILE_DATA;

➤ Listing 1



January 2000 The Delphi Magazine 49

parameter, SHGetFolderPath now
takes a number of additional
parameters as shown in Table 2.

CSIDL_APPDATA refers to applica-
tion data which contains user-
specific configuration information
that’s not tied to a particular
machine. This might, for example,
map to the following path:

C:\Documents and Settings\
Dave Jewell\Application Data

The CSIDL_LOCAL_APPDATA specifier
is used to denote a directory
sub-tree which, again, contains
user-specific data but which, this
time, is also specific to the current
machine. Conceptually, this is still
part of the user’s profile (and is
therefore inaccessible to other
users). A typical example might be:

C:\Documents and Settings\
Dave Jewell\Local Settings\
Application Data

Finally, CSIDL_COMMON_APPDATA des-
ignates configuration information
which is applicable to all users of
this computer and is therefore, by
definition, non-roaming. Once
again, a typical path might be:

C:\Documents and Settings\
All Users\Application Data

You should bear in mind that
SHGetFolderPath may not be pres-
ent on ‘lesser’ platforms. SHGet-
FolderPath is implemented inside a
small DLL called SHFOLDER.DLL and
ideally you should place calls to
SHGetFolderPath inside a wrapper
which checks for the presence of
the DLL or, better yet, redistribute
the DLL as part of your application:
Microsoft encourage you to do
this. The DLL was shipped with NT
Service Pack 4, Windows 98 Second
Edition, and I believe that it will
also be present whenever Internet
Explorer 5 has been installed.

OnNow And Off Now!
Logo compliant applications
designed for Windows 2000 need to
be designed with some built-in
awareness of OnNow. For those
who haven’t come across this
term, it’s basically part of

Microsoft’s Advanced Configura-
tion and Power Interface (ACPI) ini-
tiative, which enabled the end-user
to treat a PC (often a laptop) as an
appliance, putting it into a standby
state and then instantly restarting
and resuming where he/she left off.
In other words, your application
needs to be able to go into a state of
suspended animation on request,
without any loss of data. Part of the
design philosophy is that certain
key events should be able to ‘wake
up’ an application from its slum-
bers, a typical example being (for
example) the receipt of fax mes-
sages during the night. You can
find details of OnNow and power
management at www.microsoft.
com/hwdev/onnow.htm.

An application which needs to
continue running, even when the
PC is apparently idle, must use the
SetThreadExecutionState API call.
Thus, Microsoft suggest that video
playback or presentation applica-
tions can use the ES_DISPLAY_
REQUIRED flag in conjunction with
the aforementioned API call to pre-
vent Windows 2000 from shutting
down the display.

Windows 2000 sends a sleep
request to each application by
broadcasting a WM_POWERBROADCAST
message with wParam set to
PBT_APMQUERYSUSPEND. This is basi-
cally the operating system saying,
‘are you able to go to sleep?’ If your
application has unsaved data, for
example, then it can query bit zero
of the lParam field to determine if
it’s still able to interact with the
user (if a laptop’s lid has just been
closed, then it can’t!). If not, then it
has to deny the sleep request, oth-
erwise it can display a dialog
prompting the user to save the
affected document(s).

Conclusions
There are a lot of additional con-
siderations which there’s no space
to go into here. If you are serious
about getting that coveted logo, I’d
recommend you download the
documents and specifications that
I’ve referred to in this article. Some
of the logo requirements have
hidden implications and require
careful reading. For example, in
order to be logo compliant you
need to support multiple monitors
within your application. Most of
the time, this doesn’t require any
special action on your part, but if
you’re in the habit of hiding win-
dows by assigning them negative
coordinates, for example (a trick
that’s been around for a number of
years), then you may well fall foul
of the multiple monitor support
because, in a multiple monitor
setup, negative screen coordi-
nates may simply make the
‘hidden’ window reappear on a
monitor to the left of the current
screen!

The real challenge, of course, is
in getting a logo compliant applica-
tion to work properly under
‘lesser’ operating systems such as
Windows 98 and 95. That’s a topic
that we may look at in more detail
in the future.

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
TechEditor@itecuk.com


	Installation Changes: The Joy Of MSI
	Time To Emigrate?
	System File Protection
	Nothing New Under The Sun?
	OnNow And Off Now!

